Theorem aneq2d | index | src |

theorem aneq2d (a b c d: wff):
  $ a -> (c <-> d) $ >
  $ a -> (b /\ c <-> b /\ d) $;
StepHypRefExpression
1 biidd
a -> (b <-> b)
2 hyp h
a -> (c <-> d)
3 1, 2 aneqd
a -> (b /\ c <-> b /\ d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)