theorem aneq2i (a b c: wff): $ b <-> c $ > $ a /\ b <-> a /\ c $;
Step | Hyp | Ref | Expression |
1 |
|
id |
(b <-> c) -> (b <-> c) |
2 |
1 |
aneq2d |
(b <-> c) -> (a /\ b <-> a /\ c) |
3 |
|
hyp h |
b <-> c |
4 |
2, 3 |
ax_mp |
a /\ b <-> a /\ c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)