Theorem eex | index | src |

theorem eex {x: nat} (a: wff x) (b: wff): $ a -> b $ > $ E. x a -> b $;
StepHypRefExpression
1 con1
(~b -> A. x ~a) -> ~A. x ~a -> b
2 1 conv ex
(~b -> A. x ~a) -> E. x a -> b
3 con3
(a -> b) -> ~b -> ~a
4 hyp h
a -> b
5 3, 4 ax_mp
~b -> ~a
6 5 iald
~b -> A. x ~a
7 2, 6 ax_mp
E. x a -> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)