theorem eex {x: nat} (a: wff x) (b: wff): $ a -> b $ > $ E. x a -> b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1 | (~b -> A. x ~a) -> ~A. x ~a -> b |
|
2 | 1 | conv ex | (~b -> A. x ~a) -> E. x a -> b |
3 | con3 | (a -> b) -> ~b -> ~a |
|
4 | hyp h | a -> b |
|
5 | 3, 4 | ax_mp | ~b -> ~a |
6 | 5 | iald | ~b -> A. x ~a |
7 | 2, 6 | ax_mp | E. x a -> b |