Theorem nfor | index | src |

theorem nfor {x: nat} (a b: wff x): $ F/ x a $ > $ F/ x b $ > $ F/ x a \/ b $;
StepHypRefExpression
1 hyp h1
F/ x a
2 1 nfnot
F/ x ~a
3 hyp h2
F/ x b
4 2, 3 nfim
F/ x ~a -> b
5 4 conv or
F/ x a \/ b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)