theorem nfor {x: nat} (a b: wff x): $ F/ x a $ > $ F/ x b $ > $ F/ x a \/ b $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | F/ x a |
|
2 | 1 | nfnot | F/ x ~a |
3 | hyp h2 | F/ x b |
|
4 | 2, 3 | nfim | F/ x ~a -> b |
5 | 4 | conv or | F/ x a \/ b |