Theorem nfbi | index | src |

theorem nfbi {x: nat} (a b: wff x): $ F/ x a $ > $ F/ x b $ > $ F/ x a <-> b $;
StepHypRefExpression
1 hyp h1
F/ x a
2 hyp h2
F/ x b
3 1, 2 nfim
F/ x a -> b
4 2, 1 nfim
F/ x b -> a
5 3, 4 nfan
F/ x (a -> b) /\ (b -> a)
6 5 conv iff
F/ x a <-> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)