Theorem nfal1 | index | src |

theorem nfal1 {x: nat} (a: wff x): $ F/ x A. x a $;
StepHypRefExpression
1 alex
A. x a <-> ~E. x ~a
2 nfex1
F/ x E. x ~a
3 2 nfnot
F/ x ~E. x ~a
4 1, 3 nfx
F/ x A. x a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)