theorem nfx {x: nat} (a b: wff x): $ a <-> b $ > $ F/ x b $ > $ F/ x a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | a <-> b |
|
2 | 1 | nfeqi | (F/ x a) <-> (F/ x b) |
3 | 2 | bi2i | (F/ x b) -> (F/ x a) |
4 | hyp h2 | F/ x b |
|
5 | 3, 4 | ax_mp | F/ x a |