Theorem erexb | index | src |

theorem erexb {x: nat} (a b: wff x) (c: wff):
  $ E. x (a /\ b) -> c <-> A. x (a -> b -> c) $;
StepHypRefExpression
1 bitr
(E. x (a /\ b) -> c <-> A. x (a /\ b -> c)) -> (A. x (a /\ b -> c) <-> A. x (a -> b -> c)) -> (E. x (a /\ b) -> c <-> A. x (a -> b -> c))
2 eexb
E. x (a /\ b) -> c <-> A. x (a /\ b -> c)
3 1, 2 ax_mp
(A. x (a /\ b -> c) <-> A. x (a -> b -> c)) -> (E. x (a /\ b) -> c <-> A. x (a -> b -> c))
4 impexp
a /\ b -> c <-> a -> b -> c
5 4 aleqi
A. x (a /\ b -> c) <-> A. x (a -> b -> c)
6 3, 5 ax_mp
E. x (a /\ b) -> c <-> A. x (a -> b -> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)