theorem impexp (a b c: wff): $ a /\ b -> c <-> a -> b -> c $;
Step | Hyp | Ref | Expression |
1 |
|
anim1 |
((a /\ b -> c) /\ a -> a) -> (a /\ b -> c) /\ a /\ b -> a /\ b |
2 |
|
anr |
(a /\ b -> c) /\ a -> a |
3 |
1, 2 |
ax_mp |
(a /\ b -> c) /\ a /\ b -> a /\ b |
4 |
|
anll |
(a /\ b -> c) /\ a /\ b -> a /\ b -> c |
5 |
3, 4 |
mpd |
(a /\ b -> c) /\ a /\ b -> c |
6 |
5 |
exp |
(a /\ b -> c) /\ a -> b -> c |
7 |
6 |
exp |
(a /\ b -> c) -> a -> b -> c |
8 |
|
anrr |
(a -> b -> c) /\ (a /\ b) -> b |
9 |
|
anrl |
(a -> b -> c) /\ (a /\ b) -> a |
10 |
|
anl |
(a -> b -> c) /\ (a /\ b) -> a -> b -> c |
11 |
9, 10 |
mpd |
(a -> b -> c) /\ (a /\ b) -> b -> c |
12 |
8, 11 |
mpd |
(a -> b -> c) /\ (a /\ b) -> c |
13 |
12 |
exp |
(a -> b -> c) -> a /\ b -> c |
14 |
7, 13 |
ibii |
a /\ b -> c <-> a -> b -> c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)