Theorem iexeh | index | src |

theorem iexeh {x: nat} (a: nat) (b c: wff x):
  $ F/ x c $ >
  $ x = a -> (b <-> c) $ >
  $ c -> E. x b $;
StepHypRefExpression
1 ax_6
E. x x = a
2 exim
A. x (x = a -> b) -> E. x x = a -> E. x b
3 hyp h
F/ x c
4 hyp e
x = a -> (b <-> c)
5 4 bi2d
x = a -> c -> b
6 5 com12
c -> x = a -> b
7 3, 6 ialdh
c -> A. x (x = a -> b)
8 2, 7 syl
c -> E. x x = a -> E. x b
9 1, 8 mpi
c -> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)