Theorem ealeh | index | src |

theorem ealeh {x: nat} (a: nat) (b c: wff x):
  $ F/ x c $ >
  $ x = a -> (b <-> c) $ >
  $ A. x b -> c $;
StepHypRefExpression
1 ax_3
(~c -> ~A. x b) -> A. x b -> c
2 exnal
E. x ~b <-> ~A. x b
3 hyp h
F/ x c
4 3 nfnot
F/ x ~c
5 hyp e
x = a -> (b <-> c)
6 5 noteqd
x = a -> (~b <-> ~c)
7 4, 6 iexeh
~c -> E. x ~b
8 2, 7 sylib
~c -> ~A. x b
9 1, 8 ax_mp
A. x b -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)