theorem ealeh {x: nat} (a: nat) (b c: wff x):
$ F/ x c $ >
$ x = a -> (b <-> c) $ >
$ A. x b -> c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax_3 | (~c -> ~A. x b) -> A. x b -> c |
|
| 2 | exnal | E. x ~b <-> ~A. x b |
|
| 3 | hyp h | F/ x c |
|
| 4 | 3 | nfnot | F/ x ~c |
| 5 | hyp e | x = a -> (b <-> c) |
|
| 6 | 5 | noteqd | x = a -> (~b <-> ~c) |
| 7 | 4, 6 | iexeh | ~c -> E. x ~b |
| 8 | 2, 7 | sylib | ~c -> ~A. x b |
| 9 | 1, 8 | ax_mp | A. x b -> c |