Theorem alim1 | index | src |

theorem alim1 {x: nat} (a: wff) (b: wff x): $ A. x (a -> b) <-> a -> A. x b $;
StepHypRefExpression
1 mpcom
a -> (a -> b) -> b
2 1 alimd
a -> A. x (a -> b) -> A. x b
3 2 com12
A. x (a -> b) -> a -> A. x b
4 nfv
F/ x a
5 nfal1
F/ x A. x b
6 4, 5 nfim
F/ x a -> A. x b
7 eal
A. x b -> b
8 7 imim2i
(a -> A. x b) -> a -> b
9 6, 8 ialdh
(a -> A. x b) -> A. x (a -> b)
10 3, 9 ibii
A. x (a -> b) <-> a -> A. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)