Theorem ralim1 | index | src |

theorem ralim1 {x: nat} (a: wff) (p b: wff x):
  $ A. x (p -> a -> b) <-> a -> A. x (p -> b) $;
StepHypRefExpression
1 bitr
(A. x (p -> a -> b) <-> A. x (a -> p -> b)) -> (A. x (a -> p -> b) <-> a -> A. x (p -> b)) -> (A. x (p -> a -> b) <-> a -> A. x (p -> b))
2 com12b
p -> a -> b <-> a -> p -> b
3 2 aleqi
A. x (p -> a -> b) <-> A. x (a -> p -> b)
4 1, 3 ax_mp
(A. x (a -> p -> b) <-> a -> A. x (p -> b)) -> (A. x (p -> a -> b) <-> a -> A. x (p -> b))
5 alim1
A. x (a -> p -> b) <-> a -> A. x (p -> b)
6 4, 5 ax_mp
A. x (p -> a -> b) <-> a -> A. x (p -> b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)