theorem andir (a b c: wff): $ (a \/ b) /\ c <-> a /\ c \/ b /\ c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
((a \/ b) /\ c <-> c /\ (a \/ b)) -> (c /\ (a \/ b) <-> a /\ c \/ b /\ c) -> ((a \/ b) /\ c <-> a /\ c \/ b /\ c) |
| 2 |
|
ancomb |
(a \/ b) /\ c <-> c /\ (a \/ b) |
| 3 |
1, 2 |
ax_mp |
(c /\ (a \/ b) <-> a /\ c \/ b /\ c) -> ((a \/ b) /\ c <-> a /\ c \/ b /\ c) |
| 4 |
|
bitr |
(c /\ (a \/ b) <-> c /\ a \/ c /\ b) -> (c /\ a \/ c /\ b <-> a /\ c \/ b /\ c) -> (c /\ (a \/ b) <-> a /\ c \/ b /\ c) |
| 5 |
|
andi |
c /\ (a \/ b) <-> c /\ a \/ c /\ b |
| 6 |
4, 5 |
ax_mp |
(c /\ a \/ c /\ b <-> a /\ c \/ b /\ c) -> (c /\ (a \/ b) <-> a /\ c \/ b /\ c) |
| 7 |
|
ancomb |
c /\ a <-> a /\ c |
| 8 |
|
ancomb |
c /\ b <-> b /\ c |
| 9 |
7, 8 |
oreqi |
c /\ a \/ c /\ b <-> a /\ c \/ b /\ c |
| 10 |
6, 9 |
ax_mp |
c /\ (a \/ b) <-> a /\ c \/ b /\ c |
| 11 |
3, 10 |
ax_mp |
(a \/ b) /\ c <-> a /\ c \/ b /\ c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)