theorem ordi (a b c: wff): $ a \/ b /\ c <-> (a \/ b) /\ (a \/ c) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | orim2 | (b /\ c -> b) -> a \/ b /\ c -> a \/ b | 
        
          | 2 |  | anl | b /\ c -> b | 
        
          | 3 | 1, 2 | ax_mp | a \/ b /\ c -> a \/ b | 
        
          | 4 |  | orim2 | (b /\ c -> c) -> a \/ b /\ c -> a \/ c | 
        
          | 5 |  | anr | b /\ c -> c | 
        
          | 6 | 4, 5 | ax_mp | a \/ b /\ c -> a \/ c | 
        
          | 7 | 3, 6 | iand | a \/ b /\ c -> (a \/ b) /\ (a \/ c) | 
        
          | 8 |  | mpcom | ~a -> (~a -> b) -> b | 
        
          | 9 | 8 | conv or | ~a -> a \/ b -> b | 
        
          | 10 |  | mpcom | ~a -> (~a -> c) -> c | 
        
          | 11 | 10 | conv or | ~a -> a \/ c -> c | 
        
          | 12 | 9, 11 | animd | ~a -> (a \/ b) /\ (a \/ c) -> b /\ c | 
        
          | 13 | 12 | com12 | (a \/ b) /\ (a \/ c) -> ~a -> b /\ c | 
        
          | 14 | 13 | conv or | (a \/ b) /\ (a \/ c) -> a \/ b /\ c | 
        
          | 15 | 7, 14 | ibii | a \/ b /\ c <-> (a \/ b) /\ (a \/ c) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)