theorem ordi (a b c: wff): $ a \/ b /\ c <-> (a \/ b) /\ (a \/ c) $;
Step | Hyp | Ref | Expression |
1 |
|
orim2 |
(b /\ c -> b) -> a \/ b /\ c -> a \/ b |
2 |
|
anl |
b /\ c -> b |
3 |
1, 2 |
ax_mp |
a \/ b /\ c -> a \/ b |
4 |
|
orim2 |
(b /\ c -> c) -> a \/ b /\ c -> a \/ c |
5 |
|
anr |
b /\ c -> c |
6 |
4, 5 |
ax_mp |
a \/ b /\ c -> a \/ c |
7 |
3, 6 |
iand |
a \/ b /\ c -> (a \/ b) /\ (a \/ c) |
8 |
|
mpcom |
~a -> (~a -> b) -> b |
9 |
8 |
conv or |
~a -> a \/ b -> b |
10 |
|
mpcom |
~a -> (~a -> c) -> c |
11 |
10 |
conv or |
~a -> a \/ c -> c |
12 |
9, 11 |
animd |
~a -> (a \/ b) /\ (a \/ c) -> b /\ c |
13 |
12 |
com12 |
(a \/ b) /\ (a \/ c) -> ~a -> b /\ c |
14 |
13 |
conv or |
(a \/ b) /\ (a \/ c) -> a \/ b /\ c |
15 |
7, 14 |
ibii |
a \/ b /\ c <-> (a \/ b) /\ (a \/ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)