theorem ordir (a b c: wff): $ a /\ b \/ c <-> (a \/ c) /\ (b \/ c) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
(a /\ b \/ c <-> c \/ a /\ b) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) -> (a /\ b \/ c <-> (a \/ c) /\ (b \/ c)) |
| 2 |
|
orcomb |
a /\ b \/ c <-> c \/ a /\ b |
| 3 |
1, 2 |
ax_mp |
(c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) -> (a /\ b \/ c <-> (a \/ c) /\ (b \/ c)) |
| 4 |
|
bitr |
(c \/ a /\ b <-> (c \/ a) /\ (c \/ b)) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) |
| 5 |
|
ordi |
c \/ a /\ b <-> (c \/ a) /\ (c \/ b) |
| 6 |
4, 5 |
ax_mp |
((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) |
| 7 |
|
aneq |
(c \/ a <-> a \/ c) -> (c \/ b <-> b \/ c) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) |
| 8 |
|
orcomb |
c \/ a <-> a \/ c |
| 9 |
7, 8 |
ax_mp |
(c \/ b <-> b \/ c) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) |
| 10 |
|
orcomb |
c \/ b <-> b \/ c |
| 11 |
9, 10 |
ax_mp |
(c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c) |
| 12 |
6, 11 |
ax_mp |
c \/ a /\ b <-> (a \/ c) /\ (b \/ c) |
| 13 |
3, 12 |
ax_mp |
a /\ b \/ c <-> (a \/ c) /\ (b \/ c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)