theorem ordir (a b c: wff): $ a /\ b \/ c <-> (a \/ c) /\ (b \/ c) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (a /\ b \/ c <-> c \/ a /\ b) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) -> (a /\ b \/ c <-> (a \/ c) /\ (b \/ c)) | 
        
          | 2 |  | orcomb | a /\ b \/ c <-> c \/ a /\ b | 
        
          | 3 | 1, 2 | ax_mp | (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) -> (a /\ b \/ c <-> (a \/ c) /\ (b \/ c)) | 
        
          | 4 |  | bitr | (c \/ a /\ b <-> (c \/ a) /\ (c \/ b)) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) | 
        
          | 5 |  | ordi | c \/ a /\ b <-> (c \/ a) /\ (c \/ b) | 
        
          | 6 | 4, 5 | ax_mp | ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) -> (c \/ a /\ b <-> (a \/ c) /\ (b \/ c)) | 
        
          | 7 |  | aneq | (c \/ a <-> a \/ c) -> (c \/ b <-> b \/ c) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) | 
        
          | 8 |  | orcomb | c \/ a <-> a \/ c | 
        
          | 9 | 7, 8 | ax_mp | (c \/ b <-> b \/ c) -> ((c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c)) | 
        
          | 10 |  | orcomb | c \/ b <-> b \/ c | 
        
          | 11 | 9, 10 | ax_mp | (c \/ a) /\ (c \/ b) <-> (a \/ c) /\ (b \/ c) | 
        
          | 12 | 6, 11 | ax_mp | c \/ a /\ b <-> (a \/ c) /\ (b \/ c) | 
        
          | 13 | 3, 12 | ax_mp | a /\ b \/ c <-> (a \/ c) /\ (b \/ c) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)