theorem leltsuc (a b: nat): $ a <= b <-> a < suc b $;
| Step | Hyp | Ref | Expression |
| 1 |
|
lesuc |
a <= b <-> suc a <= suc b |
| 2 |
1 |
conv lt |
a <= b <-> a < suc b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)