Theorem leltsuc | index | src |

theorem leltsuc (a b: nat): $ a <= b <-> a < suc b $;
StepHypRefExpression
1 lesuc
a <= b <-> suc a <= suc b
2 1 conv lt
a <= b <-> a < suc b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)