| Step | Hyp | Ref | Expression |
| 1 |
|
psetsep |
E. a pset a == {y | y < n /\ y e. A} |
| 2 |
|
bian1a |
(y e. A -> y < n) -> (y < n /\ y e. A <-> y e. A) |
| 3 |
|
eleq1 |
x = y -> (x e. A <-> y e. A) |
| 4 |
|
lteq1 |
x = y -> (x < n <-> y < n) |
| 5 |
3, 4 |
imeqd |
x = y -> (x e. A -> x < n <-> y e. A -> y < n) |
| 6 |
5 |
eale |
A. x (x e. A -> x < n) -> y e. A -> y < n |
| 7 |
2, 6 |
syl |
A. x (x e. A -> x < n) -> (y < n /\ y e. A <-> y e. A) |
| 8 |
7 |
eqab1d |
A. x (x e. A -> x < n) -> {y | y < n /\ y e. A} == A |
| 9 |
8 |
eqseq2d |
A. x (x e. A -> x < n) -> (pset a == {y | y < n /\ y e. A} <-> pset a == A) |
| 10 |
9 |
exeqd |
A. x (x e. A -> x < n) -> (E. a pset a == {y | y < n /\ y e. A} <-> E. a pset a == A) |
| 11 |
1, 10 |
mpbii |
A. x (x e. A -> x < n) -> E. a pset a == A |
| 12 |
11 |
eex |
E. n A. x (x e. A -> x < n) -> E. a pset a == A |
| 13 |
|
lesucid |
fst a * suc x <= suc (fst a * suc x) |
| 14 |
|
letr |
suc x <= fst a * suc x -> fst a * suc x <= suc (fst a * suc x) -> suc x <= suc (fst a * suc x) |
| 15 |
13, 14 |
mpi |
suc x <= fst a * suc x -> suc x <= suc (fst a * suc x) |
| 16 |
|
leeq1 |
1 * suc x = suc x -> (1 * suc x <= fst a * suc x <-> suc x <= fst a * suc x) |
| 17 |
|
mul11 |
1 * suc x = suc x |
| 18 |
16, 17 |
ax_mp |
1 * suc x <= fst a * suc x <-> suc x <= fst a * suc x |
| 19 |
|
lemul1a |
1 <= fst a -> 1 * suc x <= fst a * suc x |
| 20 |
|
an3l |
1 <= fst a /\ 0 < snd a /\ A. y (0 < y /\ y <= x -> y || fst a) /\ suc (fst a * suc x) || snd a -> 1 <= fst a |
| 21 |
|
elpset |
x e. pset (fst a, snd a) <-> 0 < fst a /\ 0 < snd a /\ A. y (0 < y /\ y <= x -> y || fst a) /\ suc (fst a * suc x) || snd a |
| 22 |
|
pseteq |
fst a, snd a = a -> pset (fst a, snd a) == pset a |
| 23 |
|
fstsnd |
fst a, snd a = a |
| 24 |
22, 23 |
ax_mp |
pset (fst a, snd a) == pset a |
| 25 |
24 |
a1i |
pset a == A /\ n = snd a /\ x e. A -> pset (fst a, snd a) == pset a |
| 26 |
|
anll |
pset a == A /\ n = snd a /\ x e. A -> pset a == A |
| 27 |
25, 26 |
eqstrd |
pset a == A /\ n = snd a /\ x e. A -> pset (fst a, snd a) == A |
| 28 |
27 |
eleq2d |
pset a == A /\ n = snd a /\ x e. A -> (x e. pset (fst a, snd a) <-> x e. A) |
| 29 |
|
anr |
pset a == A /\ n = snd a /\ x e. A -> x e. A |
| 30 |
28, 29 |
mpbird |
pset a == A /\ n = snd a /\ x e. A -> x e. pset (fst a, snd a) |
| 31 |
21, 30 |
sylib |
pset a == A /\ n = snd a /\ x e. A -> 0 < fst a /\ 0 < snd a /\ A. y (0 < y /\ y <= x -> y || fst a) /\ suc (fst a * suc x) || snd a |
| 32 |
31 |
conv d1, lt |
pset a == A /\ n = snd a /\ x e. A -> 1 <= fst a /\ 0 < snd a /\ A. y (0 < y /\ y <= x -> y || fst a) /\ suc (fst a * suc x) || snd a |
| 33 |
20, 32 |
syl |
pset a == A /\ n = snd a /\ x e. A -> 1 <= fst a |
| 34 |
19, 33 |
syl |
pset a == A /\ n = snd a /\ x e. A -> 1 * suc x <= fst a * suc x |
| 35 |
18, 34 |
sylib |
pset a == A /\ n = snd a /\ x e. A -> suc x <= fst a * suc x |
| 36 |
15, 35 |
syl |
pset a == A /\ n = snd a /\ x e. A -> suc x <= suc (fst a * suc x) |
| 37 |
|
ltner |
0 < snd a -> snd a != 0 |
| 38 |
|
anllr |
0 < fst a /\ 0 < snd a /\ A. y (0 < y /\ y <= x -> y || fst a) /\ suc (fst a * suc x) || snd a -> 0 < snd a |
| 39 |
38, 31 |
syl |
pset a == A /\ n = snd a /\ x e. A -> 0 < snd a |
| 40 |
37, 39 |
syl |
pset a == A /\ n = snd a /\ x e. A -> snd a != 0 |
| 41 |
31 |
anrd |
pset a == A /\ n = snd a /\ x e. A -> suc (fst a * suc x) || snd a |
| 42 |
40, 41 |
dvdle |
pset a == A /\ n = snd a /\ x e. A -> suc (fst a * suc x) <= snd a |
| 43 |
|
eqler |
n = snd a -> snd a <= n |
| 44 |
|
anlr |
pset a == A /\ n = snd a /\ x e. A -> n = snd a |
| 45 |
43, 44 |
syl |
pset a == A /\ n = snd a /\ x e. A -> snd a <= n |
| 46 |
42, 45 |
letrd |
pset a == A /\ n = snd a /\ x e. A -> suc (fst a * suc x) <= n |
| 47 |
36, 46 |
letrd |
pset a == A /\ n = snd a /\ x e. A -> suc x <= n |
| 48 |
47 |
conv lt |
pset a == A /\ n = snd a /\ x e. A -> x < n |
| 49 |
48 |
ialda |
pset a == A /\ n = snd a -> A. x (x e. A -> x < n) |
| 50 |
49 |
iexde |
pset a == A -> E. n A. x (x e. A -> x < n) |
| 51 |
50 |
eex |
E. a pset a == A -> E. n A. x (x e. A -> x < n) |
| 52 |
12, 51 |
ibii |
E. n A. x (x e. A -> x < n) <-> E. a pset a == A |
| 53 |
52 |
conv finite |
finite A <-> E. a pset a == A |