Theorem
anrd
≪
|
index
|
src
|
≫
theorem anrd (a b c: wff): $ a -> b /\ c $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
anr
b /\ c -> c
2
hyp h
a -> b /\ c
3
1
,
2
syl
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)