theorem dvdle (G: wff) (a b: nat):
$ G -> b != 0 $ >
$ G -> a || b $ >
$ G -> a <= b $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h2 |
G -> a || b |
2 |
|
mul11 |
1 * a = a |
3 |
2 |
a1i |
G /\ x * a = b -> 1 * a = a |
4 |
|
anr |
G /\ x * a = b -> x * a = b |
5 |
3, 4 |
leeqd |
G /\ x * a = b -> (1 * a <= x * a <-> a <= b) |
6 |
|
lemul1a |
1 <= x -> 1 * a <= x * a |
7 |
|
lt01 |
0 < x <-> x != 0 |
8 |
7 |
conv d1, lt |
1 <= x <-> x != 0 |
9 |
|
hyp h1 |
G -> b != 0 |
10 |
9 |
conv ne |
G -> ~b = 0 |
11 |
10 |
anwl |
G /\ x * a = b -> ~b = 0 |
12 |
|
anlr |
G /\ x * a = b /\ x = 0 -> x * a = b |
13 |
|
mul01 |
0 * a = 0 |
14 |
|
muleq1 |
x = 0 -> x * a = 0 * a |
15 |
14 |
anwr |
G /\ x * a = b /\ x = 0 -> x * a = 0 * a |
16 |
13, 15 |
syl6eq |
G /\ x * a = b /\ x = 0 -> x * a = 0 |
17 |
12, 16 |
eqtr3d |
G /\ x * a = b /\ x = 0 -> b = 0 |
18 |
11, 17 |
mtand |
G /\ x * a = b -> ~x = 0 |
19 |
18 |
conv ne |
G /\ x * a = b -> x != 0 |
20 |
8, 19 |
sylibr |
G /\ x * a = b -> 1 <= x |
21 |
6, 20 |
syl |
G /\ x * a = b -> 1 * a <= x * a |
22 |
5, 21 |
mpbid |
G /\ x * a = b -> a <= b |
23 |
22 |
eexda |
G -> E. x x * a = b -> a <= b |
24 |
23 |
conv dvd |
G -> a || b -> a <= b |
25 |
1, 24 |
mpd |
G -> a <= b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)