Theorem leeqd | index | src |

theorem leeqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> (_a1 <= _b1 <-> _a2 <= _b2) $;
StepHypRefExpression
1 hyp _ah
_G -> _a1 = _a2
2 eqidd
_G -> x = x
3 1, 2 addeqd
_G -> _a1 + x = _a2 + x
4 hyp _bh
_G -> _b1 = _b2
5 3, 4 eqeqd
_G -> (_a1 + x = _b1 <-> _a2 + x = _b2)
6 5 exeqd
_G -> (E. x _a1 + x = _b1 <-> E. x _a2 + x = _b2)
7 6 conv le
_G -> (_a1 <= _b1 <-> _a2 <= _b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_peano (addeq)