Theorem sucsub1 | index | src |

theorem sucsub1 (a: nat): $ suc a - 1 = a $;
StepHypRefExpression
1 eqtr3
a + 1 - 1 = suc a - 1 -> a + 1 - 1 = a -> suc a - 1 = a
2 subeq1
a + 1 = suc a -> a + 1 - 1 = suc a - 1
3 add12
a + 1 = suc a
4 2, 3 ax_mp
a + 1 - 1 = suc a - 1
5 1, 4 ax_mp
a + 1 - 1 = a -> suc a - 1 = a
6 pncan
a + 1 - 1 = a
7 5, 6 ax_mp
suc a - 1 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, add0, addS)