theorem sucsub1 (a: nat): $ suc a - 1 = a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
a + 1 - 1 = suc a - 1 -> a + 1 - 1 = a -> suc a - 1 = a |
2 |
|
subeq1 |
a + 1 = suc a -> a + 1 - 1 = suc a - 1 |
3 |
|
add12 |
a + 1 = suc a |
4 |
2, 3 |
ax_mp |
a + 1 - 1 = suc a - 1 |
5 |
1, 4 |
ax_mp |
a + 1 - 1 = a -> suc a - 1 = a |
6 |
|
pncan |
a + 1 - 1 = a |
7 |
5, 6 |
ax_mp |
suc a - 1 = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)