Theorem add12 | index | src |

theorem add12 (a: nat): $ a + 1 = suc a $;
StepHypRefExpression
1 eqtr
a + 1 = suc (a + 0) -> suc (a + 0) = suc a -> a + 1 = suc a
2 addS
a + suc 0 = suc (a + 0)
3 2 conv d1
a + 1 = suc (a + 0)
4 1, 3 ax_mp
suc (a + 0) = suc a -> a + 1 = suc a
5 suceq
a + 0 = a -> suc (a + 0) = suc a
6 add0
a + 0 = a
7 5, 6 ax_mp
suc (a + 0) = suc a
8 4, 7 ax_mp
a + 1 = suc a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_peano (peano2, add0, addS)