Theorem add11 | index | src |

theorem add11 (a: nat): $ 1 + a = suc a $;
StepHypRefExpression
1 eqtr
1 + a = suc (0 + a) -> suc (0 + a) = suc a -> 1 + a = suc a
2 addS1
suc 0 + a = suc (0 + a)
3 2 conv d1
1 + a = suc (0 + a)
4 1, 3 ax_mp
suc (0 + a) = suc a -> 1 + a = suc a
5 suceq
0 + a = a -> suc (0 + a) = suc a
6 add01
0 + a = a
7 5, 6 ax_mp
suc (0 + a) = suc a
8 4, 7 ax_mp
1 + a = suc a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)