theorem add11 (a: nat): $ 1 + a = suc a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
1 + a = suc (0 + a) -> suc (0 + a) = suc a -> 1 + a = suc a |
2 |
|
addS1 |
suc 0 + a = suc (0 + a) |
3 |
2 |
conv d1 |
1 + a = suc (0 + a) |
4 |
1, 3 |
ax_mp |
suc (0 + a) = suc a -> 1 + a = suc a |
5 |
|
suceq |
0 + a = a -> suc (0 + a) = suc a |
6 |
|
add01 |
0 + a = a |
7 |
5, 6 |
ax_mp |
suc (0 + a) = suc a |
8 |
4, 7 |
ax_mp |
1 + a = suc a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)