Theorem add22 | index | src |

theorem add22 (a: nat): $ a + 2 = suc (suc a) $;
StepHypRefExpression
1 eqtr
a + 2 = suc (a + 1) -> suc (a + 1) = suc (suc a) -> a + 2 = suc (suc a)
2 addS
a + suc 1 = suc (a + 1)
3 2 conv d2
a + 2 = suc (a + 1)
4 1, 3 ax_mp
suc (a + 1) = suc (suc a) -> a + 2 = suc (suc a)
5 suceq
a + 1 = suc a -> suc (a + 1) = suc (suc a)
6 add12
a + 1 = suc a
7 5, 6 ax_mp
suc (a + 1) = suc (suc a)
8 4, 7 ax_mp
a + 2 = suc (suc a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_peano (peano2, add0, addS)