theorem addcom (a b: nat): $ a + b = b + a $;
Step | Hyp | Ref | Expression |
1 |
|
addeq2 |
x = b -> a + x = a + b |
2 |
|
addeq1 |
x = b -> x + a = b + a |
3 |
1, 2 |
eqeqd |
x = b -> (a + x = x + a <-> a + b = b + a) |
4 |
|
addeq2 |
x = 0 -> a + x = a + 0 |
5 |
|
addeq1 |
x = 0 -> x + a = 0 + a |
6 |
4, 5 |
eqeqd |
x = 0 -> (a + x = x + a <-> a + 0 = 0 + a) |
7 |
|
addeq2 |
x = y -> a + x = a + y |
8 |
|
addeq1 |
x = y -> x + a = y + a |
9 |
7, 8 |
eqeqd |
x = y -> (a + x = x + a <-> a + y = y + a) |
10 |
|
addeq2 |
x = suc y -> a + x = a + suc y |
11 |
|
addeq1 |
x = suc y -> x + a = suc y + a |
12 |
10, 11 |
eqeqd |
x = suc y -> (a + x = x + a <-> a + suc y = suc y + a) |
13 |
|
eqtr4 |
a + 0 = a -> 0 + a = a -> a + 0 = 0 + a |
14 |
|
add0 |
a + 0 = a |
15 |
13, 14 |
ax_mp |
0 + a = a -> a + 0 = 0 + a |
16 |
|
add01 |
0 + a = a |
17 |
15, 16 |
ax_mp |
a + 0 = 0 + a |
18 |
|
addS |
a + suc y = suc (a + y) |
19 |
|
addS1 |
suc y + a = suc (y + a) |
20 |
|
suceq |
a + y = y + a -> suc (a + y) = suc (y + a) |
21 |
18, 19, 20 |
eqtr4g |
a + y = y + a -> a + suc y = suc y + a |
22 |
3, 6, 9, 12, 17, 21 |
ind |
a + b = b + a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)