theorem addass (a b c: nat): $ a + b + c = a + (b + c) $;
Step | Hyp | Ref | Expression |
1 |
|
addeq2 |
x = c -> a + b + x = a + b + c |
2 |
|
addeq2 |
x = c -> b + x = b + c |
3 |
2 |
addeq2d |
x = c -> a + (b + x) = a + (b + c) |
4 |
1, 3 |
eqeqd |
x = c -> (a + b + x = a + (b + x) <-> a + b + c = a + (b + c)) |
5 |
|
addeq2 |
x = 0 -> a + b + x = a + b + 0 |
6 |
|
addeq2 |
x = 0 -> b + x = b + 0 |
7 |
6 |
addeq2d |
x = 0 -> a + (b + x) = a + (b + 0) |
8 |
5, 7 |
eqeqd |
x = 0 -> (a + b + x = a + (b + x) <-> a + b + 0 = a + (b + 0)) |
9 |
|
addeq2 |
x = y -> a + b + x = a + b + y |
10 |
|
addeq2 |
x = y -> b + x = b + y |
11 |
10 |
addeq2d |
x = y -> a + (b + x) = a + (b + y) |
12 |
9, 11 |
eqeqd |
x = y -> (a + b + x = a + (b + x) <-> a + b + y = a + (b + y)) |
13 |
|
addeq2 |
x = suc y -> a + b + x = a + b + suc y |
14 |
|
addeq2 |
x = suc y -> b + x = b + suc y |
15 |
14 |
addeq2d |
x = suc y -> a + (b + x) = a + (b + suc y) |
16 |
13, 15 |
eqeqd |
x = suc y -> (a + b + x = a + (b + x) <-> a + b + suc y = a + (b + suc y)) |
17 |
|
eqtr4 |
a + b + 0 = a + b -> a + (b + 0) = a + b -> a + b + 0 = a + (b + 0) |
18 |
|
add0 |
a + b + 0 = a + b |
19 |
17, 18 |
ax_mp |
a + (b + 0) = a + b -> a + b + 0 = a + (b + 0) |
20 |
|
addeq2 |
b + 0 = b -> a + (b + 0) = a + b |
21 |
|
add0 |
b + 0 = b |
22 |
20, 21 |
ax_mp |
a + (b + 0) = a + b |
23 |
19, 22 |
ax_mp |
a + b + 0 = a + (b + 0) |
24 |
|
addS |
a + b + suc y = suc (a + b + y) |
25 |
|
eqtr |
a + (b + suc y) = a + suc (b + y) -> a + suc (b + y) = suc (a + (b + y)) -> a + (b + suc y) = suc (a + (b + y)) |
26 |
|
addeq2 |
b + suc y = suc (b + y) -> a + (b + suc y) = a + suc (b + y) |
27 |
|
addS |
b + suc y = suc (b + y) |
28 |
26, 27 |
ax_mp |
a + (b + suc y) = a + suc (b + y) |
29 |
25, 28 |
ax_mp |
a + suc (b + y) = suc (a + (b + y)) -> a + (b + suc y) = suc (a + (b + y)) |
30 |
|
addS |
a + suc (b + y) = suc (a + (b + y)) |
31 |
29, 30 |
ax_mp |
a + (b + suc y) = suc (a + (b + y)) |
32 |
|
suceq |
a + b + y = a + (b + y) -> suc (a + b + y) = suc (a + (b + y)) |
33 |
24, 31, 32 |
eqtr4g |
a + b + y = a + (b + y) -> a + b + suc y = a + (b + suc y) |
34 |
4, 8, 12, 16, 23, 33 |
ind |
a + b + c = a + (b + c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)