Theorem addlass | index | src |

theorem addlass (a b c: nat): $ a + (b + c) = b + (a + c) $;
StepHypRefExpression
1 eqtr3
a + b + c = a + (b + c) -> a + b + c = b + (a + c) -> a + (b + c) = b + (a + c)
2 addass
a + b + c = a + (b + c)
3 1, 2 ax_mp
a + b + c = b + (a + c) -> a + (b + c) = b + (a + c)
4 eqtr
a + b + c = b + a + c -> b + a + c = b + (a + c) -> a + b + c = b + (a + c)
5 addeq1
a + b = b + a -> a + b + c = b + a + c
6 addcom
a + b = b + a
7 5, 6 ax_mp
a + b + c = b + a + c
8 4, 7 ax_mp
b + a + c = b + (a + c) -> a + b + c = b + (a + c)
9 addass
b + a + c = b + (a + c)
10 8, 9 ax_mp
a + b + c = b + (a + c)
11 3, 10 ax_mp
a + (b + c) = b + (a + c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)