Theorem addrass | index | src |

theorem addrass (a b c: nat): $ a + b + c = a + c + b $;
StepHypRefExpression
1 eqtr
a + b + c = a + (b + c) -> a + (b + c) = a + c + b -> a + b + c = a + c + b
2 addass
a + b + c = a + (b + c)
3 1, 2 ax_mp
a + (b + c) = a + c + b -> a + b + c = a + c + b
4 eqtr4
a + (b + c) = a + (c + b) -> a + c + b = a + (c + b) -> a + (b + c) = a + c + b
5 addeq2
b + c = c + b -> a + (b + c) = a + (c + b)
6 addcom
b + c = c + b
7 5, 6 ax_mp
a + (b + c) = a + (c + b)
8 4, 7 ax_mp
a + c + b = a + (c + b) -> a + (b + c) = a + c + b
9 addass
a + c + b = a + (c + b)
10 8, 9 ax_mp
a + (b + c) = a + c + b
11 3, 10 ax_mp
a + b + c = a + c + b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)