theorem addrass (a b c: nat): $ a + b + c = a + c + b $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eqtr | 
          a + b + c = a + (b + c) -> a + (b + c) = a + c + b -> a + b + c = a + c + b  | 
        
        
          | 2 | 
           | 
          addass | 
          a + b + c = a + (b + c)  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          a + (b + c) = a + c + b -> a + b + c = a + c + b  | 
        
        
          | 4 | 
           | 
          eqtr4 | 
          a + (b + c) = a + (c + b) -> a + c + b = a + (c + b) -> a + (b + c) = a + c + b  | 
        
        
          | 5 | 
           | 
          addeq2 | 
          b + c = c + b -> a + (b + c) = a + (c + b)  | 
        
        
          | 6 | 
           | 
          addcom | 
          b + c = c + b  | 
        
        
          | 7 | 
          5, 6 | 
          ax_mp | 
          a + (b + c) = a + (c + b)  | 
        
        
          | 8 | 
          4, 7 | 
          ax_mp | 
          a + c + b = a + (c + b) -> a + (b + c) = a + c + b  | 
        
        
          | 9 | 
           | 
          addass | 
          a + c + b = a + (c + b)  | 
        
        
          | 10 | 
          8, 9 | 
          ax_mp | 
          a + (b + c) = a + c + b  | 
        
        
          | 11 | 
          3, 10 | 
          ax_mp | 
          a + b + c = a + c + b  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_peano
     (peano2,
      peano5,
      addeq,
      add0,
      addS)