Theorem add4 | index | src |

theorem add4 (a b c d: nat): $ a + b + (c + d) = a + c + (b + d) $;
StepHypRefExpression
1 eqtr3
a + b + c + d = a + b + (c + d) -> a + b + c + d = a + c + (b + d) -> a + b + (c + d) = a + c + (b + d)
2 addass
a + b + c + d = a + b + (c + d)
3 1, 2 ax_mp
a + b + c + d = a + c + (b + d) -> a + b + (c + d) = a + c + (b + d)
4 eqtr
a + b + c + d = a + c + b + d -> a + c + b + d = a + c + (b + d) -> a + b + c + d = a + c + (b + d)
5 addeq1
a + b + c = a + c + b -> a + b + c + d = a + c + b + d
6 addrass
a + b + c = a + c + b
7 5, 6 ax_mp
a + b + c + d = a + c + b + d
8 4, 7 ax_mp
a + c + b + d = a + c + (b + d) -> a + b + c + d = a + c + (b + d)
9 addass
a + c + b + d = a + c + (b + d)
10 8, 9 ax_mp
a + b + c + d = a + c + (b + d)
11 3, 10 ax_mp
a + b + (c + d) = a + c + (b + d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)