theorem add4 (a b c d: nat): $ a + b + (c + d) = a + c + (b + d) $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
a + b + c + d = a + b + (c + d) -> a + b + c + d = a + c + (b + d) -> a + b + (c + d) = a + c + (b + d) |
2 |
|
addass |
a + b + c + d = a + b + (c + d) |
3 |
1, 2 |
ax_mp |
a + b + c + d = a + c + (b + d) -> a + b + (c + d) = a + c + (b + d) |
4 |
|
eqtr |
a + b + c + d = a + c + b + d -> a + c + b + d = a + c + (b + d) -> a + b + c + d = a + c + (b + d) |
5 |
|
addeq1 |
a + b + c = a + c + b -> a + b + c + d = a + c + b + d |
6 |
|
addrass |
a + b + c = a + c + b |
7 |
5, 6 |
ax_mp |
a + b + c + d = a + c + b + d |
8 |
4, 7 |
ax_mp |
a + c + b + d = a + c + (b + d) -> a + b + c + d = a + c + (b + d) |
9 |
|
addass |
a + c + b + d = a + c + (b + d) |
10 |
8, 9 |
ax_mp |
a + b + c + d = a + c + (b + d) |
11 |
3, 10 |
ax_mp |
a + b + (c + d) = a + c + (b + d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)