theorem addcan1 (a b c: nat): $ a + c = b + c <-> a = b $;
Step | Hyp | Ref | Expression |
1 |
|
addeq2 |
x = c -> a + x = a + c |
2 |
|
addeq2 |
x = c -> b + x = b + c |
3 |
1, 2 |
eqeqd |
x = c -> (a + x = b + x <-> a + c = b + c) |
4 |
3 |
bieq1d |
x = c -> (a + x = b + x <-> a = b <-> (a + c = b + c <-> a = b)) |
5 |
|
addeq2 |
x = 0 -> a + x = a + 0 |
6 |
|
addeq2 |
x = 0 -> b + x = b + 0 |
7 |
5, 6 |
eqeqd |
x = 0 -> (a + x = b + x <-> a + 0 = b + 0) |
8 |
7 |
bieq1d |
x = 0 -> (a + x = b + x <-> a = b <-> (a + 0 = b + 0 <-> a = b)) |
9 |
|
addeq2 |
x = y -> a + x = a + y |
10 |
|
addeq2 |
x = y -> b + x = b + y |
11 |
9, 10 |
eqeqd |
x = y -> (a + x = b + x <-> a + y = b + y) |
12 |
11 |
bieq1d |
x = y -> (a + x = b + x <-> a = b <-> (a + y = b + y <-> a = b)) |
13 |
|
addeq2 |
x = suc y -> a + x = a + suc y |
14 |
|
addeq2 |
x = suc y -> b + x = b + suc y |
15 |
13, 14 |
eqeqd |
x = suc y -> (a + x = b + x <-> a + suc y = b + suc y) |
16 |
15 |
bieq1d |
x = suc y -> (a + x = b + x <-> a = b <-> (a + suc y = b + suc y <-> a = b)) |
17 |
|
eqeq |
a + 0 = a -> b + 0 = b -> (a + 0 = b + 0 <-> a = b) |
18 |
|
add0 |
a + 0 = a |
19 |
17, 18 |
ax_mp |
b + 0 = b -> (a + 0 = b + 0 <-> a = b) |
20 |
|
add0 |
b + 0 = b |
21 |
19, 20 |
ax_mp |
a + 0 = b + 0 <-> a = b |
22 |
|
bitr |
(a + suc y = b + suc y <-> suc (a + y) = suc (b + y)) -> (suc (a + y) = suc (b + y) <-> a + y = b + y) -> (a + suc y = b + suc y <-> a + y = b + y) |
23 |
|
eqeq |
a + suc y = suc (a + y) -> b + suc y = suc (b + y) -> (a + suc y = b + suc y <-> suc (a + y) = suc (b + y)) |
24 |
|
addS |
a + suc y = suc (a + y) |
25 |
23, 24 |
ax_mp |
b + suc y = suc (b + y) -> (a + suc y = b + suc y <-> suc (a + y) = suc (b + y)) |
26 |
|
addS |
b + suc y = suc (b + y) |
27 |
25, 26 |
ax_mp |
a + suc y = b + suc y <-> suc (a + y) = suc (b + y) |
28 |
22, 27 |
ax_mp |
(suc (a + y) = suc (b + y) <-> a + y = b + y) -> (a + suc y = b + suc y <-> a + y = b + y) |
29 |
|
peano2 |
suc (a + y) = suc (b + y) <-> a + y = b + y |
30 |
28, 29 |
ax_mp |
a + suc y = b + suc y <-> a + y = b + y |
31 |
|
id |
(a + y = b + y <-> a = b) -> (a + y = b + y <-> a = b) |
32 |
30, 31 |
syl5bb |
(a + y = b + y <-> a = b) -> (a + suc y = b + suc y <-> a = b) |
33 |
4, 8, 12, 16, 21, 32 |
ind |
a + c = b + c <-> a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)