theorem addcan2 (a b c: nat): $ a + b = a + c <-> b = c $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a + b = a + c <-> b + a = c + a) -> (b + a = c + a <-> b = c) -> (a + b = a + c <-> b = c) |
2 |
|
eqeq |
a + b = b + a -> a + c = c + a -> (a + b = a + c <-> b + a = c + a) |
3 |
|
addcom |
a + b = b + a |
4 |
2, 3 |
ax_mp |
a + c = c + a -> (a + b = a + c <-> b + a = c + a) |
5 |
|
addcom |
a + c = c + a |
6 |
4, 5 |
ax_mp |
a + b = a + c <-> b + a = c + a |
7 |
1, 6 |
ax_mp |
(b + a = c + a <-> b = c) -> (a + b = a + c <-> b = c) |
8 |
|
addcan1 |
b + a = c + a <-> b = c |
9 |
7, 8 |
ax_mp |
a + b = a + c <-> b = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)