Theorem addcan2 | index | src |

theorem addcan2 (a b c: nat): $ a + b = a + c <-> b = c $;
StepHypRefExpression
1 bitr
(a + b = a + c <-> b + a = c + a) -> (b + a = c + a <-> b = c) -> (a + b = a + c <-> b = c)
2 eqeq
a + b = b + a -> a + c = c + a -> (a + b = a + c <-> b + a = c + a)
3 addcom
a + b = b + a
4 2, 3 ax_mp
a + c = c + a -> (a + b = a + c <-> b + a = c + a)
5 addcom
a + c = c + a
6 4, 5 ax_mp
a + b = a + c <-> b + a = c + a
7 1, 6 ax_mp
(b + a = c + a <-> b = c) -> (a + b = a + c <-> b = c)
8 addcan1
b + a = c + a <-> b = c
9 7, 8 ax_mp
a + b = a + c <-> b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)