theorem syl5bb (a b c d: wff):
$ b <-> c $ >
$ a -> (c <-> d) $ >
$ a -> (b <-> d) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h1 |
b <-> c |
2 |
1 |
a1i |
a -> (b <-> c) |
3 |
|
hyp h2 |
a -> (c <-> d) |
4 |
2, 3 |
bitrd |
a -> (b <-> d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)