Theorem
sylbir
≪
|
index
|
src
|
≫
theorem sylbir (a b c: wff): $ b <-> a $ > $ b -> c $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h2
b -> c
2
hyp h1
b <-> a
3
2
bi2i
a -> b
4
1
,
3
syl
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)