Theorem sylbi | index | src |

theorem sylbi (a b c: wff): $ a <-> b $ > $ b -> c $ > $ a -> c $;
StepHypRefExpression
1 hyp h2
b -> c
2 hyp h1
a <-> b
3 2 bi1i
a -> b
4 1, 3 syl
a -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)