Theorem
sylbi
≪
|
index
|
src
|
≫
theorem sylbi (a b c: wff): $ a <-> b $ > $ b -> c $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h2
b -> c
2
hyp h1
a <-> b
3
2
bi1i
a -> b
4
1
,
3
syl
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)