Theorem
sylibr
≪
|
index
|
src
|
≫
theorem sylibr (a b c: wff): $ c <-> b $ > $ a -> b $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h1
c <-> b
2
1
bi2i
b -> c
3
hyp h2
a -> b
4
2
,
3
syl
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)