Theorem sylibr | index | src |

theorem sylibr (a b c: wff): $ c <-> b $ > $ a -> b $ > $ a -> c $;
StepHypRefExpression
1 hyp h1
c <-> b
2 1 bi2i
b -> c
3 hyp h2
a -> b
4 2, 3 syl
a -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)