theorem syl5bbr (a b c d: wff):
$ c <-> b $ >
$ a -> (c <-> d) $ >
$ a -> (b <-> d) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bicom |
(c <-> b) -> (b <-> c) |
| 2 |
|
hyp h1 |
c <-> b |
| 3 |
1, 2 |
ax_mp |
b <-> c |
| 4 |
|
hyp h2 |
a -> (c <-> d) |
| 5 |
3, 4 |
syl5bb |
a -> (b <-> d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)