Theorem eqeqd | index | src |

theorem eqeqd (G: wff) (a b c d: nat):
  $ G -> a = b $ >
  $ G -> c = d $ >
  $ G -> (a = c <-> b = d) $;
StepHypRefExpression
1 hyp h1
G -> a = b
2 1 eqeq1d
G -> (a = c <-> b = c)
3 hyp h2
G -> c = d
4 3 eqeq2d
G -> (b = c <-> b = d)
5 2, 4 bitrd
G -> (a = c <-> b = d)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)