Theorem eqeq2d | index | src |

theorem eqeq2d (G: wff) (a b c: nat):
  $ G -> b = c $ >
  $ G -> (a = b <-> a = c) $;
StepHypRefExpression
1 eqeq2
b = c -> (a = b <-> a = c)
2 hyp h
G -> b = c
3 1, 2 syl
G -> (a = b <-> a = c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)