theorem ind {x y: nat} (a: nat y) (px: wff x) (p0 pa py ps: wff y):
$ x = a -> (px <-> pa) $ >
$ x = 0 -> (px <-> p0) $ >
$ x = y -> (px <-> py) $ >
$ x = suc y -> (px <-> ps) $ >
$ p0 $ >
$ py -> ps $ >
$ pa $;
Step | Hyp | Ref | Expression |
1 |
|
hyp ha |
x = a -> (px <-> pa) |
2 |
1 |
eale |
A. x px -> pa |
3 |
|
peano5 |
[0 / x] px -> A. x (px -> [suc x / x] px) -> A. x px |
4 |
|
hyp h0 |
x = 0 -> (px <-> p0) |
5 |
4 |
sbe |
[0 / x] px <-> p0 |
6 |
|
hyp h1 |
p0 |
7 |
5, 6 |
mpbir |
[0 / x] px |
8 |
3, 7 |
ax_mp |
A. x (px -> [suc x / x] px) -> A. x px |
9 |
|
nfv |
F/ y px -> [suc x / x] px |
10 |
|
nfv |
F/ x py |
11 |
|
nfsb1 |
F/ x [suc y / x] px |
12 |
10, 11 |
nfim |
F/ x py -> [suc y / x] px |
13 |
|
hyp hy |
x = y -> (px <-> py) |
14 |
|
suceq |
x = y -> suc x = suc y |
15 |
14 |
sbeq1d |
x = y -> ([suc x / x] px <-> [suc y / x] px) |
16 |
13, 15 |
imeqd |
x = y -> (px -> [suc x / x] px <-> py -> [suc y / x] px) |
17 |
9, 12, 16 |
cbvalh |
A. x (px -> [suc x / x] px) <-> A. y (py -> [suc y / x] px) |
18 |
|
hyp h2 |
py -> ps |
19 |
|
hyp hs |
x = suc y -> (px <-> ps) |
20 |
19 |
sbe |
[suc y / x] px <-> ps |
21 |
20 |
bi2i |
ps -> [suc y / x] px |
22 |
18, 21 |
rsyl |
py -> [suc y / x] px |
23 |
22 |
ax_gen |
A. y (py -> [suc y / x] px) |
24 |
17, 23 |
mpbir |
A. x (px -> [suc x / x] px) |
25 |
8, 24 |
ax_mp |
A. x px |
26 |
2, 25 |
ax_mp |
pa |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5)