Theorem suceqd | index | src |

theorem suceqd (G: wff) (a b: nat): $ G -> a = b $ > $ G -> suc a = suc b $;
StepHypRefExpression
1 suceq
a = b -> suc a = suc b
2 hyp h
G -> a = b
3 1, 2 syl
G -> suc a = suc b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_peano (peano2)