theorem suceqd (G: wff) (a b: nat): $ G -> a = b $ > $ G -> suc a = suc b $;
Step | Hyp | Ref | Expression |
1 |
|
suceq |
a = b -> suc a = suc b |
2 |
|
hyp h |
G -> a = b |
3 |
1, 2 |
syl |
G -> suc a = suc b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_peano
(peano2)