Theorem sbeq1d | index | src |

theorem sbeq1d {x: nat} (G: wff x) (a b: nat x) (c: wff x):
  $ G -> a = b $ >
  $ G -> ([a / x] c <-> [b / x] c) $;
StepHypRefExpression
1 sbeq1
a = b -> ([a / x] c <-> [b / x] c)
2 hyp h
G -> a = b
3 1, 2 syl
G -> ([a / x] c <-> [b / x] c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)