theorem sbeqd (_G: wff) {x: nat} (_a1 _a2: nat x) (_p1 _p2: wff x):
  $ _G -> _a1 = _a2 $ >
  $ _G -> (_p1 <-> _p2) $ >
  $ _G -> ([_a1 / x] _p1 <-> [_a2 / x] _p2) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqidd | _G -> y = y | 
        
          | 2 |  | hyp _ah | _G -> _a1 = _a2 | 
        
          | 3 | 1, 2 | eqeqd | _G -> (y = _a1 <-> y = _a2) | 
        
          | 4 |  | biidd | _G -> (x = y <-> x = y) | 
        
          | 5 |  | hyp _ph | _G -> (_p1 <-> _p2) | 
        
          | 6 | 4, 5 | imeqd | _G -> (x = y -> _p1 <-> x = y -> _p2) | 
        
          | 7 | 6 | aleqd | _G -> (A. x (x = y -> _p1) <-> A. x (x = y -> _p2)) | 
        
          | 8 | 3, 7 | imeqd | _G -> (y = _a1 -> A. x (x = y -> _p1) <-> y = _a2 -> A. x (x = y -> _p2)) | 
        
          | 9 | 8 | aleqd | _G -> (A. y (y = _a1 -> A. x (x = y -> _p1)) <-> A. y (y = _a2 -> A. x (x = y -> _p2))) | 
        
          | 10 | 9 | conv sb | _G -> ([_a1 / x] _p1 <-> [_a2 / x] _p2) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7)