theorem sbeqd (_G: wff) {x: nat} (_a1 _a2: nat x) (_p1 _p2: wff x):
$ _G -> _a1 = _a2 $ >
$ _G -> (_p1 <-> _p2) $ >
$ _G -> ([_a1 / x] _p1 <-> [_a2 / x] _p2) $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> y = y |
2 |
|
hyp _ah |
_G -> _a1 = _a2 |
3 |
1, 2 |
eqeqd |
_G -> (y = _a1 <-> y = _a2) |
4 |
|
biidd |
_G -> (x = y <-> x = y) |
5 |
|
hyp _ph |
_G -> (_p1 <-> _p2) |
6 |
4, 5 |
imeqd |
_G -> (x = y -> _p1 <-> x = y -> _p2) |
7 |
6 |
aleqd |
_G -> (A. x (x = y -> _p1) <-> A. x (x = y -> _p2)) |
8 |
3, 7 |
imeqd |
_G -> (y = _a1 -> A. x (x = y -> _p1) <-> y = _a2 -> A. x (x = y -> _p2)) |
9 |
8 |
aleqd |
_G -> (A. y (y = _a1 -> A. x (x = y -> _p1)) <-> A. y (y = _a2 -> A. x (x = y -> _p2))) |
10 |
9 |
conv sb |
_G -> ([_a1 / x] _p1 <-> [_a2 / x] _p2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7)