theorem sbeq2d (_G: wff) {x: nat} (a: nat x) (_p1 _p2: wff x):
$ _G -> (_p1 <-> _p2) $ >
$ _G -> ([a / x] _p1 <-> [a / x] _p2) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | _G -> a = a |
|
| 2 | hyp _h | _G -> (_p1 <-> _p2) |
|
| 3 | 1, 2 | sbeqd | _G -> ([a / x] _p1 <-> [a / x] _p2) |