theorem sbeq2i {x: nat} (a: nat x) (b c: wff x):
  $ b <-> c $ >
  $ [a / x] b <-> [a / x] c $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hyp h | b <-> c | |
| 2 | 1 | a1i | T. -> (b <-> c) | 
| 3 | 2 | sbeq2d | T. -> ([a / x] b <-> [a / x] c) | 
| 4 | 3 | trud | [a / x] b <-> [a / x] c |