Theorem sbeq2i | index | src |

theorem sbeq2i {x: nat} (a: nat x) (b c: wff x):
  $ b <-> c $ >
  $ [a / x] b <-> [a / x] c $;
StepHypRefExpression
1 hyp h
b <-> c
2 1 a1i
T. -> (b <-> c)
3 2 sbeq2d
T. -> ([a / x] b <-> [a / x] c)
4 3 trud
[a / x] b <-> [a / x] c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)