Theorem sbeht | index | src |

theorem sbeht {x: nat} (a: nat) (b c: wff x):
  $ F/ x c $ >
  $ A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c) $;
StepHypRefExpression
1 nfal1
F/ x A. x (x = a -> (b <-> c))
2 nfsb1
F/ x [a / x] b
3 hyp h
F/ x c
4 2, 3 nfbi
F/ x [a / x] b <-> c
5 1, 4 nfim
F/ x A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c)
6 sbq
x = a -> (b <-> [a / x] b)
7 6 anwl
x = a /\ A. x (x = a -> (b <-> c)) -> (b <-> [a / x] b)
8 eal
A. x (x = a -> (b <-> c)) -> x = a -> (b <-> c)
9 8 impcom
x = a /\ A. x (x = a -> (b <-> c)) -> (b <-> c)
10 7, 9 bitr3d
x = a /\ A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c)
11 10 exp
x = a -> A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c)
12 5, 11 eexh
E. x x = a -> A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c)
13 ax_6
E. x x = a
14 12, 13 ax_mp
A. x (x = a -> (b <-> c)) -> ([a / x] b <-> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)