Theorem
impcom
≪
|
index
|
src
|
≫
theorem impcom (a b c: wff): $ a -> b -> c $ > $ b /\ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h
a -> b -> c
2
1
com12
b -> a -> c
3
2
imp
b /\ a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)