Theorem
expcom
≪
|
index
|
src
|
≫
theorem expcom (a b c: wff): $ a /\ b -> c $ > $ b -> a -> c $;
Step
Hyp
Ref
Expression
1
hyp h
a /\ b -> c
2
1
exp
a -> b -> c
3
2
com12
b -> a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)