Theorem syla | index | src |

theorem syla (a b c d: wff): $ (b -> c) -> d $ > $ a /\ b -> c $ > $ a -> d $;
StepHypRefExpression
1 hyp h1
(b -> c) -> d
2 hyp h2
a /\ b -> c
3 2 exp
a -> b -> c
4 1, 3 syl
a -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)