theorem sylan (a b c d: wff):
$ b /\ c -> d $ >
$ a -> b $ >
$ a -> c $ >
$ a -> d $;
| Step | Hyp | Ref | Expression |
| 1 |
|
hyp h |
b /\ c -> d |
| 2 |
|
hyp h1 |
a -> b |
| 3 |
|
hyp h2 |
a -> c |
| 4 |
2, 3 |
iand |
a -> b /\ c |
| 5 |
1, 4 |
syl |
a -> d |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)