Theorem sylan | index | src |

theorem sylan (a b c d: wff):
  $ b /\ c -> d $ >
  $ a -> b $ >
  $ a -> c $ >
  $ a -> d $;
StepHypRefExpression
1 hyp h
b /\ c -> d
2 hyp h1
a -> b
3 hyp h2
a -> c
4 2, 3 iand
a -> b /\ c
5 1, 4 syl
a -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)